Identification of mucoralean fungi causing soft rot in papaya (Carica papaya L.) fruit in Mexico

Isabel Cruz-Lachica, Isidro Márquez-Zequera, Raymundo Saúl García-Estrada, José Armando Carrillo-Fasio, Josefina León-Félix, Raúl Allende-Molar

Abstract


Mexico is one of the main papaya producers worldwide; however, yield is affected by fungal diseases such as the fruit soft rot, which causes preharvest and postharvest losses. Although it is a common disease, information related to the identification of the causal agents is scarce. The objective in this study was to identify by morphological and molecular techniques the species of mucoralean fungi responsibles of papaya soft rot. Diseased fruits were collected during May-October 2014 in production regions in Colima, Veracruz, and Oaxaca. Mucoralean fungi were isolated, their pathogenicity was determined by the Koch´s postulates and fungal structures were registered. The molecular characterization was conducted by analyzing the ITS and 28S (LSU) ribosomal regions. The identification was confirmed by comparison with sequences deposited in the Genbank and by phylogenetic analysis. The strains isolated in this study were placed in monophyletic clades supporting to Gilbertella persicaria detected in the three states sampled, Mucor irregularis in Veracruz, and Rhizopus oryzae in Oaxaca as the causal agents of papaya soft rot. This is the first report of M. irregularis and R. oryzae affecting papaya fruit in Mexico. Although G. persicaria has been reported in Colima State, this study shows its presence in Oaxaca and Veracruz States.


Keywords


Gilbertella persicaria; Mucor irregularis; Rhizopus oryzae; sporangia

Full Text:

PDF (Español)

References


Alves MH, Campos-Takaki GM, Figueiredo PAL and Milanez AI. 2002. Screening of Mucor spp. for the production of amylase, lipase, polygalacturonase and protease. Brazilian Journal of Microbiology 33:325-330. http://dx.doi.org/10.1590/S1517-83822002000400009

Beales P. 2012. Detection of fungal plant pathogens from plants, soil, water and air. Pp: 26-52. In: Lane RC, Bealesand PA and Hughes JDK (eds.). Fungal Plant Pathogens. CAB International. U. K. 324 p.

Benny L. 1991. Gilbertellaceae, a new family of the Mucorales (Zygomycetes). Mycologia 83:150-157. http://dx.doi.org/10.2307/3759930

Campbell CK, Johnson EM and Warnack DW. 2013. Identification of Pathogenic Fungi. Second Edition. Wiley-Blackwell. Health Protection Agency. U.K. 337 p.

Chukwuka KS, Okonko IO and Adekunle AA. 2010. Microbial ecology of organisms causing pawpaw (Carica papaya L.) fruit decay in Oyo State, Nigeria. American-Eurasian Journal of Toxicological Sciences 2:43-50. http://www.idosi.org/aejts/2(1)10/7.pdf

Cruz-Lachica I, Marquez-Zequera I, Garcia-Estrada RS, Carrillo-Fasio JA, Leon-Felix J and Allende-Molar R. 2016. First report of Gilbertella persicaria causing papaya fruit rot. Plant Disease 100:227. http://dx.doi.org/10.1094/PDIS-05-15-0607-PDN

de Hoog GS and van den Ende GAH. 1998. Molecular diagnostics of clinical strains of filamentous basidiomycetes. Mycoses 41:183-189. http://dx.doi.org/10.1111/j.1439-0507.1998.tb00321.x

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783-791. http://dx.doi.org/10.2307/2408678.

Food and Agriculture Organization (FAO). 2014. Estadísticas. http://faostat3.fao.org/browse/Q/QC/S. Consulta (Julio, 2016).

Ginting C, Zehr EI and Westcott SW. 1996. Inoculum source and characterization of isolates of Gilbertella persicaria from peach fruit in South Carolina. Plant Disease 80:1129-1134. https://www.apsnet.org/publications/PlantDisease/BackIssues/Documents/1996Articles/PlantDisease80n10_1129.pdf

Guo LW, Wu XY, Mao ZC, Ho HH and He YQ. 2012. Storage rot of dragon fruit caused by Gilbertella persicaria. Plant Disease 96(12):1826. http://dx.doi.org/10.1094/PDIS-07-12-0635-PDN

Hakim S, Naz S, Gul S, Chaudhary HJ and Munis MFH. 2015. First report of Rhizopus oryzae causing fruit rot of Citrus medica L. in Pakistan. Journal of Plant Pathology 97:209-220. http://dx.doi.org/10.4454/JPP.V97I1.035

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic acids. Symposium Series. Oxford University Press 41:95-98. http://jwbrown.mbio.ncsu.edu/JWB/papers/1999Hall1.pdf

Hoffmann K, Pawłowska J, Walther G, Wrzosek M, Hoog GS, Benny GL, Kirk PM and Voigt K. 2013. The family structure of the Mucorales: a synoptic revision based on comprehensive multigene-genealogies. Persoonia 30:57-76. http://dx.doi.org/10.3767/003158513X666259

Hyde KD, Nilsson RH, Alias SA, Ariyawansa HA, Blair JE et al. 2014. One stop shop: backbones trees for important phytopathogenic genera: I (2014). Fungal Diversity 67:21-125. http://dx.doi.org/10.1007/s13225-014-0298-1

Krisch J, Takó M, Papp T and Vágvölgyi C. 2010. Characteristics and potential use of β-glucosidases from Zygomycetes. Pp: 891-895. In: Méndez-Vilas A (ed.). Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology. Vol. II. Formatex Research Center. Extremadura, Spain. 1620 p.

Kwon J, Ryu J, Chi TTP, Shen S and Choi O. 2012. Soft rot of Rhizopus oryzae as a postharvest pathogen of banana fruit in Korea. Mycobiology 40:214-216. http://dx.doi.org/10.4489/MYCO.2011.39.2.140

Lacap DC, Hyde KD and Liew ECY. 2003. An evaluation of the fungal ‘morphotype’ concept based on ribosomal DNA sequences. Fungal Diversity 12: 53-66. http://www.fungaldiversity.org/fdp/sfdp/FD12-53-66.pdf

Michailides TJ. 1991. Characterization and comparative studios of Mucor isolates from stone fruits from California and Chile. Plant Disease 75:373-380. https://www.apsnet.org/publications/PlantDisease/BackIssues/Documents/1991Articles/PlantDisease75n04_373.pdf

Michailides TJ and Spotts RA. 1990. Postharvest diseases of pome and stone fruits caused by Mucor piriformis in the Pacific Northwest and California. Plant Disease 74:537-543. http://www.apsnet.org/publications/PlantDisease/BackIssues/Documents/1990Articles/PlantDisease74n08_537.PDF

Morton J. 1987. Papaya (Carica papaya L.). Pp: 336–346. In: Morton JF (ed.). Fruits of warm climates. Creative Resource Systems Inc. Winterville, USA. 505 p.

O’Donnell K. 1993. Fusarium and its near relatives. Pp: 225–233. In: Reynolds DR and Taylor JW (eds.). The Fungal Holomorph: Mitotic, Meiotic and Pleomorphic Speciation in Fungal Systematics. CAB International. Wallingford. UK. 375 p.

Papp T, Vastag M, Michailides TJ, Ferenczy L and Vágvölgyi C. 2001. Genetic variability of the postharvest pathogen Gilbertella persicaria: identiï¬cation of randomly ampliï¬ed polymorphic DNA (RAPD) markers correlating with (+) and (–) mating types. Antonie Van Leeuwenhoek 80:301-309. http://dx.doi.org/10.1023/A:1013066024258

Peng XD, Huang SL and Lin SH. 2015. First report of corn kernel brown spot disease caused by Mucor irregularis in China. Plant Disease 99:159-160. http://dx.doi.org/10.1094/PDIS-08-14-0814-PDN‬‬‬‬‬‬‬

‬‬‬

Pinho DB, Pereira OL and Soares DJ. 2014. First report of Gilbertella persicaria as the cause of soft rot of fruit of Syzygium cumini. Australasian Plant Disease Notes 9:143-146. http://dx.doi.org/10.1007/s13314-014-0143-0

Ryan M, Ritchie BJ and Smith D. 2012. Maintenance and storage of fungal plant pathogens. Pp: 223-250. In: Lane CR, Beales PA and Hughes KJD. Fungal Plant Pathogens. CAB International. South Asia. 324 p.

Suárez-Quiroz ML, Mendoza-Bautista I, Monroy-Rivera JA, de la Cruz-Medina J, Angulo-Guerrero O y González-Ríos O. 2013. Aislamiento, identificación y sensibilidad a antifúngicos de hongos fitopatógenos de papaya cv. Maradol (Carica papaya L.). Revista Iberoamericana de Tecnología Postcosecha 14:115-124. http://www.redalyc.org/pdf/813/81329290004.pdf

Tamura K and Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10:512-526. http://mbe.oxfordjournals.org/content/10/3/512.long

Tamura K, Stecher G, Peterson D, Filipski A and Kumar S. 2013. Mega 6: Molecular evolutionary genetics analysis Versión 6.0. Molecular Biology and Evolution 30:2725-2729. http://dx.doi.org/10.1093/molbev/mst197

Vilgalys R and Hester M. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 172:4238-4246. http://jb.asm.org/content/172/8/4238.long

Voigt K, Cigelnik E and O'Donnell K. 1999. Phylogeny and PCR identification of clinically important zygomycetes based on nuclear ribosomal-DNA sequence data. Journal of Clinical Microbiology 37(12):3957-3964. http://jcm.asm.org/content/37/12/3957.long

Walther G, Pawłowska J, Alastruey-Izquierdo A, Wrzosek M, Rodriguez-Tudela JL, Dolatabadi S, Chakrabarti A and de Hoog GS. 2013. DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia 30:11-47. http://dx.doi.org/10.3767/003158513X665070

White T, Bruns T, Lee S and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetic. Pp: 315-322. In: Innis MA, Gelfand DH, Sninsky JJ and White TJ (Eds.). PCR Protocols: a Guide to Methods and Applications. San Diego. Academic Press. 392 p. https://nature.berkeley.edu/brunslab/papers/white1990.pdf




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1611-3

Refbacks

  • There are currently no refbacks.