Genetic improvement for resistance to Fusarium wilt in banana

Rómulo García-Velasco, Nayanci Portal-González, Ramón Santos-Bermúdez, Armando Rodríguez-García, Barbarita Companioni-González

Abstract


Bananas and plantains (Musa spp.) represent one of the most important products for food security and income generation. However, the production of these crops is threatened by the attack of diseases such as Panama disease or Fusarium wilt. In recent years there is a general consensus that the only form of effective and sustainable control, both economic and for this disease, is genetic improvement for resistance. Several biotechnology based strategies have been developed for the genetic improvement of the crop in obtaining individuals resistant or tolerant to fusariosis. The present work was carried out with the objective of providing a review of scientific literature related to the use of biotechnological tools in genetic improvement for resistance to fusarial wilt in bananas, with emphasis on in vitro, ex vitro and field selection for pathogen resistance. The results presented in this review demonstrate the potential of biotechnology in the field of genetic improvement in crops. Which allow to accelerate the genetic improvement programs of resistance to this disease.

Keywords


biotechnology disease, Musa spp.; early selection

Full Text:

PDF

References


Bubici G, Kaushal M, Prigigallo MI, Gómez C and Mercado J. 2019. Biological control agents against Fusarium wilt of banana. Frontiers in Microbiological 10: 616. https://doi.org/10.3389/fmicb.2019.00616

Buddenhagen IW. 2009. Understanding strain diversity in Fusarium oxysporum f. sp. cubense and history of introduction of ‘tropical race 4’ to better manage banana production. Acta Horticulturae 828(828): 193-204. https://doi.org/10.17660/ActaHortic.2009.828.19

Chen YF, Chen W, Huang X, Hu X, Zhao JT, Gong Q, Li XJ and Huang XL. 2013. Fusarium wilt-resistant lines of Brazil banana (Musa spp., AAA) obtained by EMS-induced mutation in a micro-cross- section cultural system. Plant Pathology 62(1): 112-119. https://doi.org/10.1111/j.1365-3059.2012.02620.x

Companioni B, Arzola M, Rodríguez Y, Mosqueda M, Pérez MC, Borrás O, Lorenzo JC and Santos R. 2003. Use of in vitro culture-derived Fusarium oxysporum f. sp. cubense race 1 filtrates for rapid and non-destructive differentiation of field-grown banana resistant from susceptible clones. Euphytica 130: 341-347. https://doi.org/10.1023/A:1023027604627

Companioni B, Lorenzo JC y Santos R. 2012. Nuevo método para la diferenciación al Mal de Panamá en banano. Editorial Académica Española. http://www.eae-publishing.com

Companioni B, Mora N, Díaz L, Pérez A, Arzola M, Espinosa P, Hernández M, Ventura J, Pérez MC, Santos R and Lorenzo JC. 2005. Identification of discriminant factors alter treatment of resistant and susceptible banana leaves with Fusarium oxysporum f. sp. cubense culture filtrates. Plant Breeding 124: 79–85. https://doi.org/10.1111/j.1439-0523.2004.00997.x

Cruz VM, Kilian A and Dierig DA. 2013. Development of DArT marker platforms and genetic diversity assessment of the U.S. collection of the new oilseed crop lesquerella and related species. PloS One 8: 1-13. https://doi.org/10.1371/journal.pone.0064062

Dale JL, James A, Paul JY, Khanna H, Smith M, Peraza-Echeverria S, García-Bastidas F, Kema G, Waterhouse P, Mengersen K and Harding R. 2017. Transgenic Cavendish bananas with resistance to Fusarium wilt tropical race 4. Nature Communications (United Kingdom) 8 (1):1496. https://doi.org/10.1038/s41467-017-01670-6

Dean R, Van Kan JAL, Pretorius ZA, Hammond K, Di Prieto A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J and Foster G. 2012. The Top 10 fungal pathogens in molecular plant pathology. Molecular Plant Pathology 13(4): 414-430. https://doi: 10.1111/j.1364-3703.2011.00783.x

Dita MA, Waalwijk C, Paiva LV, Souza MT and Kema GHJ. 2011. A greenhouse bioassay for the Fusarium oxysporum f. sp. cubense x ‘Grand Naine’ (Musa, AAA, Cavendish subgroup) interaction. Acta Horticulturae 897: 377-380. https://doi.org: 10.17660/ActaHortic.2011.897.51

Dong X, Ling N, Wang M, Shen Q and Guo S. 2012. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants. Plant Physiology Biochemistry 60: 171-179. https://doi.org/10.1016/j.plaphy.2012.08.004

FAO. 2017. Global programme on banana Fusarium wilt disease: Protecting banana production from the disease with focus on tropical race 4 (TR4). FAO, Rome, ITA. http://www.fao.org/3/a-i7921e.pdf

Fourie G, Steenkamp ET, Gordon TR and Viljoen A. 2009. Evolutionary relationships among the Fusarium oxysporum f. sp. cubense vegetative compatibility groups. Applied Environmental Microbiology 75: 4770-4781. https://doi.org/10.1128/AEM.00370-09

Fu L, Penton CR, Ruan Y, Shen Z, Xue C, Li R and Shen Q. 2017. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease. Soil Biology and Biochemistry 104: 39-48. https://doi.org/10.1016/j.soilbio.2016.10.008

García-Velasco R, Portal-González N, Santos-Bermúdez R, Yanes-Paz E, Lorenzo-Feijoo JC. y Companioni-González B. 2020. Método rápido aplicado en la evaluación previa de la resistencia del banano al Fusarium oxysporum f. sp. cubense. Revista Mexicana de Fitopatología 38(2): 389-397. https://doi.org/10.18781/R.MEX.FIT.2004-1

García-Bastidas F, Quintero J, Ayala M, Schermer T, Seidl M, Santos M, Noguera AM, Aguilera C, Wittenberg A, Sørensen A, Hofstede R and Kema GHJ. 2019. First report of Fusarium wilt tropical race 4 in Cavendish bananas caused by Fusarium odoratissimum in Colombia. Disease notes. https://doi.org/10.1094/PDIS-09-19-1922-PDN

Ghag SB, Shekhawat UK and Ganapathi TR. 2012. Petunia floral defensins with unique prodomains as novel candidates for development of Fusarium wilt resistance in transgenic banana plants. PLoS One 7: 39557. https://doi.org/10.1371/journal.pone.0039557

Ghag SB, Shekhawat UK and Ganapathi TR. 2014. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana. Plant Biotechnology Journal 12: 541–553. https://doi.org/10.1111/pbi.12158

Groenewald S, van der Berg N, Marasas WFO and Viljoen A. 2006. Biological, physiological and pathogenic variation in a genetically homogenous population of Fusarium oxysporum f. sp. cubense. Australasian Plant Pathology 35: 401-409. https://link.springer.com/article/10.1071/AP06041

Guo L, Han L, Yang L, Zeng H, Fan D, Zhu Y, Feng Y, Wang G, Peng C, Jiang X, Zhou D, Ni P, Liang C, Liu L, Wang J, Mao C, Fang X, Peng M and Huang J. 2014. Genome and transcriptome analysis of the fungal pathogen Fusarium oxysporum f. sp. cubense causing banana vascular wilt disease. PLoS ONE 9(4): e95543. https://doi.org/10.1371/journal.pone.0095543

Houbin C, Chunxiang X, Qirui F, Guibing H, Jianguo L, Zehuai W and Molina AB Jr. 2004. Screening of banana clones for resistance to fusarium wilt in China. In: Molina AB, Xu LB, Roa VN, Van den Bergh I. and Borromeo KH (eds.). Advancing banana and plantain R&D in Asia and the Pacific, Vol.13. Proceedings of the 3rd BAPNET Steering Committee meeting held in Guangzhou, China, 23-26 November, 2004. 165-174 p.

Howang SC and Ko WH. 2007. Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan. Plant Disease 88(6): 580-588. https://doi.org/10.1094/PDIS.2004.88.6.580

Huang BZ, Xu LB and Molina AB. 2005. Preliminary evaluation of IMTP-III varieties and local cultivars against Fusarium wilt disease in southern China. In: Molina AB, Xu LB, Roa VN, Van den Bergh I. and Borromeo KH (eds.). Advancing banana and plantain R&D in Asia and the Pacific, Vol.13. Proceedings of the 3rd BAPNET Steering Committee meeting held in Guangzhou, China, 23-26 November, 2004. 187-192 p.

Li WM, Dita M, Wub W, Hua GB, Xie JH and Geb XJ. 2015. Resistance sources to Fusarium oxysporum f. sp. cubense tropical race 4 in banana wild relatives. Plant Pathology 64: 1061-1067. https://doi.org/10.1111/ppa.12340

Lin YH and Lin YL. 2016. Recent developments in the molecular detection of Fusarium oxysporum f. sp. cubense. Journal of Nature and Science 2(10): e239. Disponible en línea: http://www.jnsci.org/files/article/2016/e239.pdf

Mahdavi F, Sariah M and Maziah M. 2012. Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to Fusarium wilt. Applied Biochemistry Biotechnology 166 (4): 1008-1019. https://doi.org/10.1007/s12010-011-9489-3

Manzo G, Orozco M, Martínez L, Garrido E y Canto B. 2014. Enfermedades de importancia cuarentenaria y económica del cultivo de banano (Musa sp.) en México. Revista Mexicana de Fitopatología 32(2): 89-107. https://www.smf.org.mx/rmf/Vol3222014/AR/32-2_02.pdf

Martínez GE, Rey JC, Pargas RE y Manzanilla EE. 2020. Marchitez por Fusarium raza tropical 4: Estado actual y presencia en el continente americano. Agronomía Mesoamericana 31(1): 259-276. https://doi.org/10.15517/am.v31i1.37925

Mohamed AA, Mak C, Liew KW and Ho YW. 2000. Early evaluation of banana plants at nursery stage for Fusarium wilt tolerance. In: Molina AB, Masdek NK and Liew KW (eds.). Banana Fusarium wilt management: towards sustainable cultivation, proc. int. workshop on the Banana Fusarium wilt disease, Genting Highlands Resort, Malaysia, 18-20 October 1999. 174-185 p.

Mohandas S, Sowmya HD, Saxena AK, Meenakshia S, Thilaka RR and Mohmood Riaz. 2013. Transgenic banana cv. ‘Rasthali’ (AAB, Silk gp) harbouring Ace-AMP1 gene imparts enhanced resistance to Fusarium oxysporum f. sp. cubense race 1. Scientia Horticulturae 164: 392-399. https://doi.org/10.1016/j.scienta.2013.09.018

Molina AB, Sinohin VG, Fabregar E, Ramillete EB, Loayan MM and Chao CP. 2016. Field resistance of Cavendish somaclonal variants and local banana cultivars to tropical race 4 of Fusarium wilt in the Philippines. Acta Horticulturae 1114: 227-230. https://doi.org/10.17660/ActaHortic.2016.1114.31

Molina AB, Fabregar EG, Ramillete EG, Sinohin VO and Viljoen A. 2011. Field resistance of selected banana cultivars against tropical race 4 of Fusarium oxysporum f. sp. cubense in the Philippines. Phytopathology 101: S122-S122. https://doi.org/10.13140/RG.2.2.16107.23844

Molina AB, Fabregar EG, Soquita RO and Sinohin VGO. 2011. Comparison of host reaction to Fusarium oxysporum f. sp. cubense tropical race 4 and agronomic performance of somaclonal variant ‘GCTCV-119’ (AAA, Cavendish) and ‘Grand Naine’ (AAA, Cavendish) in commercial farms in the Philippines. Acta Horticulture 897(897): 399-402. DOI: 10.17660/ActaHortic.2011.897.55

Nelson PE, Toussoun TA and Marasas WFO. 1983. Fusarium species. An illustrated manual for identification. Pennsilvania State University Press. University Park of London.

Ortiz R and Swennen R. 2014. From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnology Advances 32(1): 158-169. https://doi.org/10.1016/j.biotechadv.2013.09.010

Paul JY, Becker DK, Dickman MB, Harding RM, Khanna HK and Dale JL. 2011. Apoptosis-related genes confer resistance to Fusarium wilt in transgenic ‘Lady Finger’ bananas. Plant Biotechnology Journal 9(9): 1141-1148. https://doi.org/10.1111/j.1467-7652.2011.00639.x

Ploetz RC. 2015. Fusarium wilt of banana. Phytopathology 105: 1512-1521. https://doi.org/10.1094/PHYTO-04-15-0101-RVW

Ploetz RC. 2006. Fusarium wilt of banana is caused by several pathogens referred to as Fusarium oxysporum f. sp. cubense. Phytopathology 96(6): 653-656. https://doi.org/10.1094/PHYTO-96-0653

Portal N, Soler A, Alphonsine PAM, Borras-Hidalgo O, Portieles R, Peña-Rodríguez LM, Yanes E, Herrera L, Solano J, Ribadeneira C, Walton JD and Santos R. 2018. Nonespecific toxins as components of a host-specific culture filtrate from Fusarium oxysporum f. sp. cubense race 1. Plant Pathology 67(2): 467-476. https://doi.org/10.1111/ppa.12736

SADER-SENASICA. 2019. Acuerda SENASICA y productores de plátano acciones conjuntas para prevenir entrada de Fusarium oxysporum f. sp. cubense raza 4 tropical. Disponible en: https://www.gob.mx/senasica/articulos/acuerda-senasica-y-productores-de-platano-acciones-conjuntas-para-prevenir-entrada-de-fusarium-oxysporum-f-s-p-cubense-raza-4-tropical-210454?idiom=es.

Saraswathi M, Kannan G, Uma S, Thangavelu R and Backiyarani S. 2016. Improvement of banana cv. Rasthali (Silk, AAB) against Fusarium oxysporum f. sp. cubense (VCG 0124/5) through induced mutagenesis: Determination of LD50 specific to mutagen, explants, toxins and in vitro and in vivo screening for Fusarium wilt resistance. Indian Journal of Experimental Biology 54: 345-353. https://pubmed.ncbi.nlm.nih.gov/27319054/

Švábová L and Lebeda A. 2005. In vitro selection for improved plant resistance to toxin-producing pathogens. Journal of Phytopathology 153(1): 52-64. https://doi.org/10.1111/j.1439-0434.2004.00928.x

Wu YL, Yi GJ and Peng XX. 2010. Rapid screening of Musa species for resistance to Fusarium wilt in an in vitro bioassay. European Journal of Plant Pathology 128(3): 409-415. https://doi.org/10.1007/s10658-010-9669-y

Ying L and Yi L. 2016. Recent developments in the molecular detection of Fusarium oxysporum f. sp. cubense. Journal of Nature and Science 2(10): e239. https://www.jnsci.org/content/239

Zhuang J, Coates CJ, Mao Q, Wu Z, and Xie L. 2016. The antagonistic effect of Banana bunchy top virus multifunctional protein B4 against Fusarium oxysporum. Molecular Plant Pathology (5): 669-679. https://doi.org/10.1111/mpp.12319

Zisi X, Xin Z, Yeyuan C, Shirong L, Shouxing W. 2009. Assessment of banana germplasm for resistance to fusarium wilt. Chinese Journal of Tropical Crops 3: 362-364. http://caod.oriprobe.com/articles/15644270/Assessment_of_Banana_Germplasm_for_Resistance_to_Fusarium_Wilt.htm




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2008-2

Refbacks

  • There are currently no refbacks.