Lysozymes: characteristics, mechanism of action and technological applications on the control of pathogenic microorganisms

Alma Carolina Gálvez-Iriqui, Maribel Plascencia-Jatomea, Silvia Bautista-Baños

Abstract


Since lysozymes and enzymes-like lysozymes have antibacterial and antifungal activity, they are becoming attractive as new alternatives for controlling pathogenic microorganisms. Although the antimicrobial enzymes have been proposed in the food industry and crop protection, their use involves some disadvantages. These include the inactivation by inhibitors, chemicals, or processing conditions, the high production and purification costs, and problems of solubility and instability. Enzyme immobilization is a promising tool capable of reducing some inconveniences, mainly when it is intended to work in solid media. This review shows state of the art on the lysozyme activity against bacteria and fungi, focusing on its mechanisms of action. The most important aspects and characteristics of the antimicrobial lysozymes and their possible technological application, including the application of chitosan-based polymeric matrices for the immobilization of the antimicrobial enzymes, are also discussed.

Keywords


Antimicrobial enzymes; nanomaterials; polymeric matrices; chitosan

Full Text:

PDF

References


Bautista-Baños S, Romanazzi G and Jiménez-Aparicio A. 2016. Chitosan in the preservation of agricultural commodities. 1st Edition. Elsevier Academic Press. New York, USA. 384 pp. ISBN 9780128027356. https://doi.org/10.1016/C2014-0-03033-X

Bilal M and Iqbal HMN. 2019. Naturally-derived biopolymers: potential platforms for enzyme immobilization. International Journal of Biological Macromolecules 130(1): 462–482. https://doi.org/10.1016/J.IJBIOMAC.2019.02.152

Cao D, Wu H, Li Q, Sun Y, Liu T, Fei J, Zhao Y, Wu S, Hu X and Li N. 2015. Expression of recombinant human lysozyme in egg whites of transgenic hens. PloS one 10(2): e0118626. https://doi.org/10.1371/journal.pone.0118626

Chen T, Ren C, Wang Y, Luo P, Jiang X, Huang W and Hu C. 2016. Molecular cloning, inducible expression and antibacterial analysis of a novel i-type lysozyme (lyz-i2) in Pacific white shrimp, Litopenaeus vannamei. Fish & Shellfish Immunology 54(1): 197–203. https://doi.org/10.1016/J.FSI.2016.04.008

Deng Q, Zhou C and Luo B. 2006. Preparation and characterization of chitosan nanoparticles containing lysozyme. Pharmaceutical Biology 44(5): 336–342. https://doi.org/10.1080/13880200600746246

Fio?ka MJ, Ptaszy?ska AA and Czarniawski W. 2005. Antibacterial and antifungal lysozyme-type activity in Cameraria ohridella pupae. Journal of Invertebrate Pathology 90(1): 1–9. https://doi.org/10.1016/j.jip.2005.06.015

Gálvez-Iriqui AC, Cortez-Rocha MO, Burgos-Hernández A, Calderón-Santoyo M, Argüelles-Monal WM and Plascencia-Jatomea M. 2019. Synthesis of chitosan biocomposites loaded with pyrrole-2-carboxylic acid and assessment of their antifungal activity against Aspergillus niger. Applied Microbiology and Biotechnology 103:2985–3000. https://doi.org/10.1007/s00253-019-09670-w

Gow NAR, Latge JP and Munro CA. 2017. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Pp: 267–291. In: Heitman JGN, Howlett B, Crous P and Stukenbrock EJT (Eds.). The Fungal Kingdom. Vol. 5. ASM Press. Washington, DC., USA. 1160p. https://doi.org/10.1128/microbiolspec.funk-0035-2016

Han T, Nwe N, Furuike T, Tokura S and Tamura H. 2012. Methods of N-acetylated chitosan scaffolds and its Invitro biodegradation by lysozyme. Journal of Biomedical Science and Engineering 5(1): 15–23. https://doi.org/10.4236/jbise.2012.51003

Hardin J, Bertoni GP and Kleinsmith LJ. 2016. Enzymes: The Catalysts of Life. Pp:142-146. In: Hardin J and Bertoni G (Eds.). Becker’s World of the Cell. 9th ed. Pearson Higher Ed. USA. 920p.

Held J and van Smaalen S. 2014. The active site of hen eggwhite lysozyme: flexibility and chemical bonding. Acta Crystallographica Section D 70(4): 1136–1146. https://doi.org/https://doi.org/10.1107/S1399004714001928

Hernández-Téllez CN, Cortez-Rocha MO, Burgos-Hernández A, Rosas-Burgos EC, Lizardi-Mendoza J, Torres-Arreola W and Plascencia-Jatomea M. 2018. Chitosan/ carrageenan/lysozyme particles: Synthesis, characterization and antifungal activity against Aspergillus parasiticus. Revista Mexicana de Ingeniería Química 17(3): 897-912. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n3/Hernandez

Hernández-Téllez CN, Rodríguez-Córdova FJ, Rosas-Burgos EC, Cortez-Rocha MO, Burgos-Hernández A, Lizardi- Mendoza J and Plascencia-Jatomea M. 2017. Activity of chitosan–lysozyme nanoparticles on the growth, membrane integrity, and ?-1,3-glucanase production by Aspergillus parasiticus. 3 Biotech 7(5): 279. https://doi.org/10.1007/s13205-017-0913-4

Huang W, Xu H, Xue Y, Huang R, Deng H and Pan S. 2012. Layer-by-layer immobilization of lysozyme–chitosan–organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Research International 48(2): 784–791. https://doi.org/10.1016/J.FOODRES.2012.06.026

Jana M, Ghosh A, Santra A, Kar RK, Misra AK and Bhunia A. 2017. Synthesis of novel muramic acid derivatives and their interaction with lysozyme: Action of lysozyme revisited. Journal of Colloid and Interface Science 498: 395–404. https://doi.org/10.1016/J.JCIS.2017.03.060

Kim M, Park M and Jeong Y. 2012. Purification and characterization of lysozyme from filipino venus, Ruditapes philippinarum. Food Science and Biotechnology 21(5): 1463–1468. https://doi.org/10.1007/s10068-012-0193-z

Liburdi K, Benucci I, Palumbo F and Esti M. 2016. Lysozyme immobilized on chitosan beads: Kinetic characterization and antimicrobial activity in white wines. Food Control 63: 46-52. https://doi.org/10.1016/j.foodcont.2015.11.015

Lopera D, Aristizabal BH, Restrepo A, Cano LE and González A. 2008. Lysozyme plays a dual role against the dimorphic fungi fungus Paracoccidioides brasiliensis. Revista do Instituto de Medicina Tropical de Sao Paulo 50(3): 169-175. https://doi.org/10.1590/S0036-46652008000300008

Manikandan M, Balasubramaniam R and Chun SC. 2015. A single-step purification of Cauliflower lysozyme and its dual role against bacterial and fungal plant pathogens. Applied Biochemistry and Biotechnology 177(2): 556–566. https://doi.org/10.1007/s12010-015-1747-3

Matouskova P, Marova I, Bokrova J and Benesova P. 2016. Effect of encapsulation on antimicrobial activity of herbal extracts with lysozyme. Food technology and biotechnology 54(3): 304. https://doi.org/10.17113/ftb.54.03.16.4413

Monteiro JM, Pereira AR, Reichmann NT, Saraiva BM, Fernandes PB, Veiga H and Pinho M. G. 2018. Peptidoglycan synthesis drives an FtsZ-treadmillingindependent step of cytokinesis. Nature 554(7693): 528–532. https://doi.org/10.1038/nature25506

Oh YH and Park NG. 2018. Isolation of an invertebrate-type lysozyme from the body wall of spoon worm, Urechis unicinctus. Journal of Life Science 28(3): 300–306. https://doi.org/10.5352/JLS.2018.28.3.300

Phillips D. 1967. The Hen Egg-White Lysozyme Molecule. Pp: 483–495. In: Symposium on Three-Dimensional Structure of Macromolecules of Biological Origin on October 19, 1966. Vol. 57(3). National Academy of Sciences. Durham, North Carolina, USA. 550p. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC335535/?page=10

Piras AM, Maisetta G, Sandreschi S, Esin S, Gazzarri M, Batoni G and Chiellini F. 2014. Preparation, physical–chemical and biological characterization of chitosan nanoparticles loaded with lysozyme. International Journal of Biological Macromolecules 67: 124-131. https://doi.org/10.1016/j.ijbiomac.2014.03.016

Sheng L, Wang J, Huang M, Xu Q and Ma M. 2016. The changes of secondary structures and properties of lysozyme along with the egg storage. International Journal of Biological Macromolecules 92: 600–606. https://doi.org/10.1016/j.ijbiomac.2016.07.068

Sawasdipuksa N, Lei Z, Sumner LW, Niyomploy P and Sangvanich P. 2011. A lysozyme with antifungal activity from Pithecellobium dulce seeds. Food Technology and Biotechnology 49(4): 489-494. https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=111619

Sebaa S, Hizette N, Boucherit?Otmani Z and Courtois P. 2017. Dose?dependent effect of lysozyme upon Candida albicans biofilm. Molecular Medicine Reports 15(3): 1135-1142. https://doi.org/10.3892/mmr.2017.6148

Sowa-Jasi?ek A, Zdybicka-Barabas A, St?czek S, Wydrych J, Skrzypiec K, Mak P and Cytry?ska M. 2016. Galleriamellonella lysozyme induces apoptotic changes in Candida albicans cells. Microbiological Research 193: 121–131. https://doi.org/10.1016/j.micres.2016.10.003

Stick RV, Williams SJ, Stick RV and Williams SJ. 2009. Enzymatic cleavage of glycosides: mechanism, inhibition and synthetic applications. Pp: 253–284. In: Stick RV and Williams S (Eds.). Carbohydrates: the essential molecules of life. Elsevier Science. 2nd Ed. 496pp. https://doi.org/10.1016/B978-0-240-52118-3.00007-7

Strader S. 2018. Human Lysozyme. University of Virginia. https://collab.its.virginia.edu/access/content/group/f85bed6c-45d2-4b18-b868-6a2353586804/2/Ch06_Strader_S_Lysozyme_(Human)-_-/index.html. (Consulta,23 Julio 2020).

Sukhithasri V, Nisha N, Biswas L, Kumar VA and Biswas R. 2013. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiological Research 168(7): 396-406. http://dx.doi.org/10.1016/j.micres.2013.02.005

Taylor EJ, Skjøt M, Skov LK, Klausen M, De Maria L, Gippert GP, Turkenburg JP, Davies GJ and Wilson KS. 2019. The C-type lysozyme from the upper gastrointestinal tract of Opisthocomus hoatzin, the stinkbird. International Journal of Molecular Science 20(22): 5531. https://doi.org/10.3390/ijms20225531

Thallinger B, Prasetyo EN, Nyanhongo GS and Guebitz GM. 2013. Antimicrobial enzymes: An emerging strategy to fight microbes and microbial biofilms. Biotechnology Journal 8(1): 97–109. https://doi.org/10.1002/biot.201200313

Wang D and Jiang W. 2019. Preparation of chitosan-based nanoparticles for enzyme immobilization. International Journal of Biological Macromolecule 126: 1125-1132. https://doi.org/10.1016/J.IJBIOMAC.2018.12.243

Wang S, Ng TB, Chen T, Lin D, Wu J, Rao P and Ye X. 2005. First report of a novel plant lysozyme with both antifungal and antibacterial activities. Biochemical and Biophysical Research Communications 327(3): 820–827. https://doi.org/10.1016/j.bbrc.2004.12.077

Wang ZZ, Zhan LQ and Chen X. 2018. Two types of lysozymes from the whitefly Bemisia tabaci: Molecular characterization and functional diversification. Developmental and Comparative Immunology 81: 252–261. https://doi.org/10.1016/j.dci.2017.12.012

Woods CN, Hooper DN, Ooi EH, Tan L-W and Carney AS. 2011. Human lysozyme has fungicidal activity against nasal fungi. American Journal of Rhinology & Allergy 25(4): 205-208. https://doi.org/10.2500/ajra.2011.25.3631

Wu T, Ge Y, Li Y, Xiang Y, Jiang Y and Hu Y. 2018a. Quality enhancement of large yellow croaker treated with edible coatings based on chitosan and lysozyme. International Journal of Biological Macromolecules 120: 1072–1079. https://doi.org/10.1016/J.IJBIOMAC.2018.08.188

Wu T, Huang J, Jiang Y, Hu Y, Ye X, Liu D and Chen J. 2018b. Formation of hydrogels based on chitosan/alginate for the delivery of lysozyme and their antibacterial activity. Food Chemistry 240: 361–369. https://doi.org/10.1016/J.FOODCHEM.2017.07.052

Wu T, Jiang Q, Wu D, Hu Y, Chen S, Ding T and Chen J. 2019. What is new in lysozyme research and its application in food industry? A review. Food Chemistry 274: 698–709. https://doi.org/10.1016/J.FOODCHEM.2018.09.017




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2005-6

Refbacks

  • There are currently no refbacks.