Isolation and identification of pathogens causing stem rot of the fig tree (Ficus carica)

Sheyla Natali Jahén-Rivera, Olga Gómez-Rodríguez, David Espinosa-Victoria

Abstract


In Mexico, the intensive production system of fig (Ficus carica) var. “Nezahualcoyotl” requires densities of 12,500 plants ha-1 for yields greater than 100 t ha-1. The asexual propagation of the fig through cuttlings in the nursery is not exempt from diseases. The objective of this investigation was to identify the causal agents of the rot of cuttings of the variety “Nezahualcoyotl” and to generate the corresponding severity scale. The pathogenicity of the isolates was corroborated through Koch’s postulates. The sequencing of the ITS1-ITS4 regions indicated that the isolates were highly related to Fusarium solani, Alternaria alternata and Pythium ultimum. A severity scale with five levels of damage induced by F. solani and A. alternata and three by P. ultimum is reported for the first time. Inoculation separately with F. solani and A. alternata promoted 100% cortex damage between 21-25 days after inoculation (DAI). The coinoculation of the three pathogens induced earlier (between 11-13 DAI) necrosis of the epidermis (85%) and the cortex (80%). The severity scale will be a valuable help in the quantification and monitoring of the rot of the fig tree stem.

Keywords


Propagation; fig; necrosis; severity; Oomycetes; Ascomycetes

Full Text:

PDF

References


Barnett HL and Hunter BB. 1998. Illustrated genera of imperfect fungi. The American Phytopathological Society, Minnesota, USA. 200p.

Boliani AC, Ferreira AFA, Monteiro LNH, Silva MSACD and Rombola AD. 2019. Advances in propagation of Ficus carica L. Revista Brasileira de Fruticultura 41:1-13. doi:10.1590/0100-29452019026

Flaishman MA, Rodov V and Stover E. 2007. The fig: botany, horticulture, and breeding. Horticultural Reviews 34:113-196. doi: 10.1002/9780470380147.ch2

García V, Iriarte A, Flores S y Lesino G. 2008. Monitoreo higrotérmico de un edificio acondicionado para propagacion agámica de plantas. Avances en energías renovables y medio ambiente 12:29-36. Recuperado de https://www.mendoza-conicet.gob.ar/asades/modulos/averma/trabajos/2008/2008-t002-a005.pdf

García RMT, Mendoza CVM, Valadez ME y Muratalla LA. 2013. Initial assessment of natural diversity in Mexican fig landraces. Genetics and Molecular Research 12:3931-3943. doi: 10.4238/2013.September.23.12

Hernández RL y Sandoval IJS. 2015. Escala diagramática de severidad para el complejo mancha de asfalto del maíz. Revista Mexicana de Fitopatología 33:95-103. Recuperado de http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092015000100095&lng=es&tlng=es.

Khanzada MA, Lodhi AM and Shahzad S. 2004. Pathogenicity of Lasiodiplodia theobromae and Fusarium solani on mango. Pakistan Journal of Botany 36:181-190. Recuperado de https://www.researchgate.net/profile/Saleem_Shahzad/publication/266069789_Pathogenicity_of_Lasiodiplodia_theobromae_and_Fusarium_solani_on_mango/links/543d23540cf2c432f742531c.pdf

Leslie JF and Summerell BA. 2006. The Fusarium laboratory manual. Blackwell Publishing. USA. 388p.

Logrieco A, Moretti A and Solfrizzo M. 2009. Alternaria toxins and plant diseases: an overview of origin, occurrence and risks. World Mycotoxin Journal 2:129-140. doi:10.3920/WMJ2009.1145

López P, Venema D, de Rijk T, de Kok A, Scholten JM, Mol HG and de Nijs, M. 2016. Occurrence of Alternaria toxins in food products in The Netherlands. Food Control 60:196-204. doi: 10.1016/j.foodcont.2015.07.032

Lou J, Fu L, Peng Y and Zhou L. 2013. Metabolites from Alternaria fungi and their bioactivities. Molecules 18:5891-5935. doi: 10.3390/molecules18055891

Mavrodi OV, Walter N, Elateek S, Taylor CG and Okubara PA. 2012. Suppression of Rhizoctonia and Pythium root rot of wheat by new strains of Pseudomonas. Biological Control 62:93-102. doi: 10.1016/j.biocontrol.2012.03.013

Mazzola M, Andrews PK, Reganold JP and Levesque CA. 2002. Frequency, virulence, and metalaxyl sensitivity of Pythium spp. isolated from apple roots under conventional and organic production systems. Plant Disease 86:669-675. doi: 10.1094/PDIS.2002.86.6.669

Mendoza CVM, Vargas CJM, Calderón ZG, Mendoza CMDC, and Santacruz VA. 2017. Intensive production systems of fig (Ficus carica L.) under greenhouse conditions. Experimental Agriculture 53:339-350. doi: 10.1017/S0014479716000405Rasband WS. 2018. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/, 1997-2018.

Torres GA. 2000. Algunos aspectos de los hongos del género Fusarium y de la especie Fusarium oxysporum. Agronomía Colombiana 17:11-16. Recuperado de http://www.bdigital.unal.edu.co/24385/

Wang PH, Chen YS, Lin MJ, Tsou YJ and Ko WH. 2010. Severe decline of wax apple trees caused by Fusarium solani in northern Taiwan. Botanical Studies 51:75-80. Recuperado de http://hdl.handle.net/11455/68359

White TJ, Bruns T, Lee S and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp:315-322. In: Innis MA, Gelfand DH, Sninsky JJ and White TJ (eds.). PCR protocols: a guide to methods and applications. Academic Press. San Diego USA. 482p. doi: 10.1016/b978-0-12-372180-8.50042-1

Zhu Y, Shin S and Mazzola M. 2016. Genotype responses of two apple rootstocks to infection by Pythium ultimum causing apple replant disease. Canadian Journal of Plant Pathology 38:483-491. doi: 10.1080/07060661.2016.1260640




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2001-6

Refbacks

  • There are currently no refbacks.